Effect of stimulus cycle time on acute respiratory responses to intermittent hypercapnic hypoxia in unsedated piglets.

نویسندگان

  • Karen A Waters
  • Kellie D Tinworth
چکیده

To determine whether stimulus frequency affects physiological compensation to an intermittent respiratory stimulus, we studied piglets (n = 43) aged 14.8 +/- 2.4 days. A 24-min total hypercapnic hypoxia (HH) (10% O(2)-6% CO(2)-balance N(2) = HH) was delivered in 24-, 8-, 4-, or 2-min cycles alternating with air. Controls (n = 10) breathed air continuously. Minute ventilation and temperature were not different between the 2-min and 24-min groups, with neither different from controls during recovery. Piglets exposed to 8-min cycles had ventilatory stimulation, whereas those exposed to 4-min cycles had significant depression of ventilation. Despite this, piglets in these intermediate intermittent HH (IHH) groups (8- and 4-min cycles) showed more severe acidosis and attenuated temperature changes (P < 0.001 and P < 0.01 for pH and temperature vs. 24 min, respectively). Cycle time affected the ability of young piglets to tolerate IHH. More severe respiratory acidosis developed when IHH was delivered in intermediate (4 min or 8 min) cycles compared with the same total dose as a single episode or in short (2 min) cycles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depression of ventilatory responses after daily, cyclic hypercapnic hypoxia in piglets.

Ventilatory responses (VRs) were measured via a sealed face mask and pneumotachograph in 30 unsedated, mixed-breed miniature piglets at 12.6 +/- 2.3 days of age (day 1) and then repeated after seven daily 24-min exposures to 10% O(2)-6% CO(2) [hypercapnic hypoxia (HH)]. Arterial blood was sampled at baseline, after 10 min of exposure, and after 10 min of recovery. VRs included hypoxia (10% O(2)...

متن کامل

Intermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro

Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...

متن کامل

Pulmonary and Critical Care Updates

Some infants with obstructive sleep apnea (OSA) demonstrate delayed arousal from sleep after compromised ventilation. Accordingly, Waters and Tinworth (1) tested the hypothesis that exposure to intermittent asphyxia during development can impair arousal responses. In 10-d-old piglets, hypercapnic and hypoxic stimuli (8% O2, 7% CO2) and air (recovery) were each applied at 6-min intervals for a t...

متن کامل

Tempol relieves lung injury in a rat model of chronic intermittent hypoxia via suppression of inflammation and oxidative stress

Objective(s): Obstructive sleep apnea (OSA) is confirmed to cause lesions in multiple organs, especially in the lung tissue. Tempol is an antioxidant that has been reported to restrain inflammation and oxidative stress, with its role in OSA-induced lung injury being unclear. This study aimed to investigate the beneficial effect of tempol on chronic intermittent hypoxia (IH)-induced lung injury....

متن کامل

Human intermittent hypoxia-induced respiratory plasticity is not caused by inflammation.

Ventilatory instability, reflected by enhanced acute hypoxic (AHVR) and hypercapnic (AHCVR) ventilatory responses is a fundamental component of obstructive sleep apnoea (OSA) pathogenesis. Intermittent hypoxia-induced inflammation is postulated to promote AHVR enhancement in OSA, although the role of inflammation in intermittent hypoxia-induced respiratory changes in humans has not been examine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 94 6  شماره 

صفحات  -

تاریخ انتشار 2003